The Direct Solution of the Discrete Poisson Equation on Irregular Regions
نویسندگان
چکیده
There are several very fast direct methods which can be used to solve the discrete Poisson equation on rectangular domains. We show that these methods can also be used to treat problems on irregular regions.
منابع مشابه
Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation
n this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler- Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem.
متن کاملA Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry
A novel discrete singular convolution (DSC) formulation is presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملA Fast Semi-direct Method for the Numerical Solution of Non-separable Elliptic Equations in Irregular Domains
We investigate new algorithms for the solution of nonseparable elliptic equations in irregular domains. Such equations arise frequently in fluid dynamics and other branches of continuum mechanics. We show that the combined use of a fast iteration (involving the use of fast Poisson solvers (FPS) in rectangular domains) and the capacitance matrix method can lead to algorithms which are several ti...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کامل